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ABSTRACT

In this work we address the quantification of Brinkman’s effective viscosity, which arises due to the presence of
the porous medium and its effect on increasing or decreasing the fluid viscosity in relation to the base fluid
viscosity. This work is motivated in the main part by the lack of consensus in the available literature on the
ranges of effective viscosity. To this end, this work provides a model of quantifying the effective viscosity by
incorporating the porous microstructure in the volume-averaged Navier-Stokes equations. Extensive analysis and
testing are provided in the current work which considers five different porous microstructures, and the effective

viscosity is quantified in each case under Poiseuille flow.
Keywords - Effective Viscosity, Brinkman Equation

l. INTRODUCTION

In spite of the popularity of Darcy’s law in
the study of groundwater flow, it suffers some
limitations that include not accounting for
microscopic inertia that arises due to tortuosity of
the flow path, [1], [2], [3]. Furthermore, the absence
of viscous shear term in Darcy’s law limits its ability
to account for viscous shear effects that are
important when a macroscopic, solid boundary is
encountered and on which the no-slip condition is
imposed. Darcy’s law has been argued to be valid in
low permeability, low porosity media where
variations at the microscopic, pore-level length scale
are negligible at the macroscopic (say, thickness of a
porous layer) length scale.

In 1947, Brinkman [4] introduced an
extension to Darcy’s law by including a viscous term
to account for the viscous shear effects that are
important in the thin boundary layer near a
macroscopic  boundary. Accordingly, equations
governing the steady flow of a Newtonian fluid
through a porous medium composed of a swarm of
particles fixed in space are given by the following
equation of continuity, and linear momentum
equation that is due to Brinkman [4]:

Conservation of Mass:

Veu=0. ..(D)
Conservation of Momentum (Brinkman’s Equation):
—Vp+y*Vzﬁ—%J:6 ...(2)
whereu is the ensemble-averaged velocity, « is the

base fluid viscosity, 4 s the viscosity of the fluid

saturating the porous medium (i.e. effective
viscosity), k is the permeability and pis the

pressure. The term £ is the Darcy resistance, and
k

the term x V’Uis the viscous shear term that
facilitates imposition of a no-slip velocity condition
on solid boundaries. It is clear that when " =0,
Brinkman’s equation (2) reduces to Darcy’s law.

It has been long realized and documented
that there is an increased effective shear viscosity in
constricted geometries (such as when a dilute system
is present, or as in the pore structure of a porous
medium), and close to solid surfaces. Experimental
evidence has been summarized and reported in the
work of Henniker, (1949), (cf. [5] for reference). The
literature also reports on experimental and
theoretical investigations that provide estimates for

*

A = 2 from less than unity to as high as 10, and
o

employ a number of configurations that include flow
over spheres, flow in the presence of bounding
walls, flow over arrays of circular or elliptic
cylinders, and flow through channel-like porous
media. Other authors believe that the effective
dynamic viscosity arises due to volume averaging
and provided detailed theoretical analysis of its
quantification. Alas; the reported studies provide no
definite answer as to what the value of 1 should
be. However, many agree that the presence of solid
walls bounding the porous flow domain, and the
geometric configurations of the porous material play
an important part in the value of 4 , (cf. [6], [7], [8],
[9], [10], [11], and the references therein).

A number of studies have investigated the validity of
Brinkman’s equation and a number of excellent and
sophisticated analyses have been carried out to

quantify the effective viscosity, 4 . Some argue that

the viscosity factor, or the ratio, 4, could be greater
than unity or less than unity, (cf. [1], [12] and the
references therein), or could be taken as unity (as
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favoured by Brinkman [4]). Brinkman initially used
Einstein’s formula for the viscosity of suspension,
[13], [14], to relate fluid viscosity and the effective
viscosity, namely

- 5
R R ..(3)

where ¢ is the effective porosity of the medium
(i.e. ratio of volume of interconnected pores to the
bulk volume of the medium). Table 1, below, is
produced using equation (3).

2 /I:'u—zl_,_i(l_(p)
U 2

p > 0 A —> 35

0.01 3.475

05 2.25

0.9 1.25

0.99 1.025

1 1

Table 1. Viscosity Factor 2 Based on Einstein’s
Law for Viscosity of a Suspension
Table 1 illustrates that when ,» =1, then 2 =1, or

/1* = u . This is the Navier-Stokes flow limit, as this

case corresponds to the flow of a Newtonian fluid in
free-space, that is, in the absence of the porous

. . 7 .
matrix. When o — 0, »" — —u . Clearly, this
2

should be the Darcy flow limit. However,
Brinkman’s equation is supposed to reduce to

Darcy’s law when porosity is small and x =o0.

This could be an indication that equation (3) does
not provide a good measure of the effective viscosity
in porous media.

Many investigators have attempted to
resolve the question of effective viscosity. Some
argue that equation (3) is valid for high porosity
media (that is, porosity being close to unity). As
porosity of the medium decreases, viscosity of the
saturating fluid increases. Indeed, the literature
includes studies and experiments that report
viscosity factors ranging from less than unity to
approximately 10, (cf. [7], [10], [11] and the
references therein). In a recent work, Breugem [12]
provided elegant and thorough analysis of the
effective viscosity of fluid in a channel-type porous
medium and provided the following effective
viscosity estimate, referred to here as Breugem’s
Estimate:

(1 3 3
—(p—Duip 2 —
i = J 2 7 7 )]
7
hence, the viscosity factor takes the form:

3
[ 0,0 < —

1 3
=—(p -2 (%)
2 7

We produce Table 2 of viscosity factor, below,
using equation (5):

A=

= |1‘*

[ A= L = i((p _ i)
uo2 7

0.01 0

0.4 0

0.429 0.0002142857

0.5 0.0357142857

0.95 0.2607142857

0.99 0.2807142857

1 0.2857142857

Table 2. Viscosity Factor Based on Breugem’s

Estimate

Table 2 shows that the effective viscosity is
always less than the base fluid viscosity. When
¢ > 1, Breugem’s formula yields an effective

viscosity that is less than 30% of the base fluid
viscosity. However, one expects that when o =1 the

Navier-Stokes flow limit should be reached and
uo=g

Liu et al. [10] studied theoretically and
numerically the effects of bounding solid walls on
slow flow over regular, square arrays of circular
cylinders between two parallel plates. Their results
indicate that, between the two limits of the Darcian
porous medium and the viscous flow, the magnitude
of the viscosity factor 1 needs to be close to unity
in order to satisfy the non-slip boundary conditions
at the bounding walls.

In summary, there seems to be no
consensus as to what the viscosity factor should be,
nor as to how the effective viscosity could be
computed, and how it depends on the porosity of the
medium. However, it is agreed upon that the
effective viscosity depends on factors that include
the type of fluid, the speed of the flow, porosity and
permeability of the medium, and the presence of
bounding solid walls to the medium.

The above lack of consensus motivates the
current work in which we provide analysis of the
effective viscosity in flow through porous media.
This will be accomplished by analyzing a general
model of flow through isotropic porous media that
was developed by Du Plessis and coworkers, [1],
[2], [15], [16], based on intrinsic volume averaging.
We devise a method for evaluating the effective
viscosity under Poiseuille flow based on analyzing
the geometric factors (porosity functions) of five
different types of porous media. Expressions for the
effective viscosity, mean velocity, and maximum
velocity will be obtained. We also evaluate the
viscous flow limit and the Darcy limit, and derive a
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threshold for the transition from Darcy’s to

Brinkman’s flow regimes. Our goal is to analyze the

effect of porosity function on the effective viscosity,

with the following objectives:

1) Study the viscosity factor under Poiseuille flow.

2) Analyze the effect of the porous microstructure
on the viscosity ratio by considering different
types of porous media.

3) Quantify the effects of porosity function on the
viscosity ratio.

4) Derive expressions for the  velocity
distributions, the mean and maximum velocities
attained, flow rates, and the necessary driving
pressure gradients for the cases of flow through
porous media and through free-space.

5) Derive expressions for the viscous flow limit
and the Darcy flow limit.

1. MODEL EQUATIONS

A number of authors have derived
equations of flow through porous media by
averaging the Navier-Stokes equations over a
representative elementary volume, REV, and
quantifying the frictional forces exerted by the
porous medium on the traversing fluid through an
idealized description of the porous microstructure,
[1], [2], [15], [16]. Letting V be the bulk volume of
an REV (that is, the combined volume of the solid

and pore space), and Vv the volume of pore space,

then porosity of the medium is defined by

Vo

Now, for a fluid quantity of interest, G, the
volume average of G, that is the average of G over

the bulk volume, V, is defined by:

(p:

<G >= vi | Gdv )]
Vo

and the intrinsic volume average of G, that is the

average of G over the pore space, Vw , is defined by

G, :<G>¢:ijedv . ...(8)
? Vo

Deviation of the average of G from the true quantity

G is defined by:

G =G-<G > ...(9)

and the relationship between the volume average and

the intrinsic volume average of G is given by:

<G> <G >(pz¢G(p ...(10)

The Darcy resistance term can be argued to
be dependent on porosity function in order to
account for different types of porous structures.
What gives rise to the Darcy resistance term in the
process of intrinsic volume averaging is a surface
integral of the form, [1], [2]:

1 o - 7
7_J.[7p n+ uVuenldS (11)
S

where p’ is the pressure deviation, r is a unit normal

pointing into the solid, and S is the surface of the
solid within the REV that is in contact with the fluid.
Through their concept of representative unit
cell, RUC, Du Plessis and Masliyah, [1], [2],
quantified the integral in (11) with the help of a
geometric porosity function. In the absence of
inertial and gravitational effects, Du Plessis and
Masliyah’s averaged equations take the following
form for constant porosity media, written in terms of
the specific discharge, q :
~vp, +Evii-EFi-0 ...(12)
P P

where q = pu, and u, is the intrinsic averaged

velocity, p, is the intrinsic averaged pressure, F

is a porosity function that depends on the porous
microstructure and tortuosity of the medium. Du
Plessis and Masliyah, [1], [2], argue that
hydrodynamic permeability inclusive of nonlinear

microscopic inertial effects is given by k = .
F

Hydrodynamic permeability is the same as the
velocity-independent Darcy permeability for low

Reynolds number. Upon using k = — in (12), we
F
obtain

~vp, +Evig-L4-0, ...(13)
] k

Now, comparing (13) with (2), we see that if we can
identify the Brinkman ensemble averaged velocity,

u , with the specific discharge, ¢ and the Brinkman
pressure, p, with the intrinsic averaged pressure,

p,, then p = £ . However, this may not be the
9
case since Brinkman’s velocity is an intrinsic

velocity. We therefore write (13) in terms of the

intrinsic averaged velocity, U, , as:

[

2
—¢Vp¢+/tV2(pﬁ¢,—ﬂi u, =0 -(14)
Removing the subscript ¢ , and dividing equation
(14) by the constant porosity ¢ , we obtain:

—vp+uvii -0 ...(15)
k
or in the form

~Vp+ uV - uFi=0 ...(16)
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Brinkman’s intrinsic velocity and pressure
in equation (2) can thus be identified with the
intrinsic velocity and pressure of equation (16). We
point out that while equation (2) involves the

effective viscosity,# , equation (16) does not

include u* explicitly. However, equation (16)

includes a porosity function, F. Porosity function (or
geometric factor) F is dependent on factors such as
the porous microstructure, the constituents of the
porous matrix (diameter of solid particles), the pore
diameter, the porosity of the medium (defined in
equation (6)), and tortuosity, T, of the medium
(defined as the ratio of the pore volume to the pore
area). A number of expressions for F are available in
the literature. Some of these porosity functions are
listed in Table 3, below, which also gives the
corresponding expressions for the hydrodynamic
permeability, [15], [16].

Description Geometric Factor R . ]
F Hydrodynamic Permeability k = —
F
Granular Matter 35(1‘7@2‘3 ‘ d24p[1—(1—q))1"3][1‘—(1—@)2‘.}]
2’n-a-o'Pn-a- )% s6a-¢)*"?
Consolidated 42.69(1-T 2,22
Matter —5 5} ) T
orid* 42.60(1-T)
Unidirectional 24 - 20_ -0\
Fibre Bed - L - ed 1-yl1-9)°
d(1-\1-¢)" 24.f1-0
Ergun’s Equation 150(17@2 4>3dp2
a2 150(1-0)%
Kozeny-Carman 82 3,2
Relation M G -
9 dy” 180(1-9)"
Table 3. Geometric Factors and Hydrodynamic
Permeability.

a, Is the average pore diameter in a channel-like

porous material.
d is a microscopic characteristic length.
d, is a median diameter of spherical particles.

In the analysis to follow, we will study the
viscosity factor under Poiseuille flow then recover
the effective viscosity and view it through analysis
of different porosity functions.

I1l. PLANEPOISEUILLE FLOW
Consider the flow driven by a constant
pressure gradient, between parallel plates located at
y =-h and y = h, as shown in Figure 1.

y=h

Direction of Flow

A\

Figure 1. Representative Sketch

When the channel configuration is filled
with a fluid-saturated porous material and viscous

shear effects are taken into account, the flow is
governed by equation (16), which reduces to the

. . . d
following form in which we use p, = L.
dx
1
u” -Fu=—py. ...(17)
u

Boundary conditions are no-slip on solid walls,
namely

u(-h)=u(h)=0 ...(18)
We non-dimensionalize equations (17) and (18) with
respect to h, and with respect to a characteristic

velocity (the mean velocity of the flow, U,) by
defining:

yohy kenlkp2__2 _ft. . _»
u=upUjy=nhY k=h K,F—k—th—hz,f—K
...(19)

where k is the permeability and k = LZ is the

h
Darcy number, Da, (or dimensionless permeability).
In addition, we define:

. ...(20)
U 4

Equations (17) and (18) are thus expressed in the

following dimensionless form, respectively:

U"—fu =p .21
U(-1)=U(1)=0. ...(22)

Factor f =h’F that appears in (19) and

(21) is critical in the analysis to follow. At the
outset, we provide Tables 4(a)-4(e) of its values, for
a range of porosities, using the expressions for the
geometric factor F of Table 3. These tables provide
values for f as a function of h/d, then specific values
are provided when h/d takes on the values 10 and 20,
for the sake of illustration.

It is clear from Tables 4(a)-(e) that f
increases with increasing h/d, and decreases with
increasing porosity, until it reaches a value of zero
when ¢ =1 (a case that corresponds to flow in free-
space, that is in the absence of a porous matrix). In
the analysis to follow, the value f = 0 corresponds to
the Navier-Stokes (viscous flow) limit.

27
]ﬁl;f:ll?:lar F:% Values of f for | Values of f for

2 -

a’i--9)'l-a-9*" =10 W =20
¢ 2/3

f:thz%(?z
[-0-¢) " n-0-9~ "]

01 14334‘95088(14/(1)2 1433495.088 5733980.352

0.5 29707.7457 118830.9828

297.077457 (h/d)*

0.99 223.3504 893.401600

2.233504 (h/d)2

1308021611 (h/d)*

0.995 130.8021611 523.2086444

0.999 40.40404040 161.6161616

0.4040404040 (h/d)*
0 0 0
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Table 4(a). Values of f for a range of porosities
for granular media.

Consolidated 2.69(1—
‘;::s,“ ate F= Lﬂr) Values offfor h/d | Values of f for
Media 73
grd =10 Wd =20
7 3
T f=Fi©
42.69(1-T) h.2
_ ( : }(_].
or* d
0.1 0.383 1795.617258 (h d): 179561.7258 718246.9032
0.5 0.5 170.76 (h ‘”1 17076 68304.00
0.99 0.993* 0.306119 (1 aH* 030.6119 122.447600
0.995 0.9966666666 01439733005 (h a* 01439733005 57.58932020
0.999 0.9993333333 002852651259 (it a* 002.85265129 11.41060504
1 1 [ [ o

Table 4(b). Values of f for a range of porosities
for consolidated media.
*Approximated using 3T = 1+2¢

Unidirecti 1 4
ri[ll)ll_:l;:danﬂ F= 24y1-0 Values of ffor h/d | Values of f for h/d
) 3
d(1-41-0)" =10 =20
[ 2 2o ok
2_ 2 [ 2
f=Fh"= 7()
(-i-g)* 4
0.1 443.681275 (h ‘d.)z 44368.1275 177472.5100
0.5 197 8"4447(h3d)2 19782.4447 79129.77880
0.99 2.062963 (h‘.d)z 296.2963 1185.185200
0.995 1 965143866(h‘d)2 196.5143866 786.0575464
0.999 0.8093234225 (h ‘.d)z 080.93234225 323.7293690
1 [) 0 0

Table 4(c). Values of f for a range of porosities
for unidirectional fibre bed.

Ergun'sEquation | 15001-9)* Values of ffor h/d = | Values of ffor hd =
¢ dp” 10 20

{ 5 18 N l 2

PR U

dp
3151

0.1 12150 (h/ dp) 1215000 4860000
05 1500n/d, ) 13000 60000
099 00185185 (h/d.)? 001.85185 7.4074000
0.995 0.003787783137 (W/d ) 0003787783137 | 1.515113255
0.999 0.000)503004506(/1‘(1},): 000.01503004506 0.06012018024
- 1 e L

Table 4(d). Values of f for a range of porosities
using Ergun’s equation.

Kozeny-Carman | M Values of ffor hvd = | Values of f for A
o%dy? 10 =20

@ j=ﬁ;=1sut_;m:(gm‘: (g):w (S):ZU

0.1 L4580 (/i) T458000 5832000

o2 180 (h/dyy)* 18000 732000

099 0.0222222 (h/ dpy)* 002.22222 §.5888800

0993 0.00454533 9764 (h/ dyy ) 0004545330764 1.818135906

0999 0.0001803605 407(h/ dpy )* 000.01803605407 | 007214421628

1 ] 5 3

Table 4(e). Values of f for a range of porosities
using Kozeny-Carman relation.
Brinkman Velocity Profile

General solution to (21) is given by:

P
U = c, cosh \/f_Y + ¢, sinh \/f_Y -—. ...(23)
f

Using (22) in (23) we obtain

C. =

! f cosh \/_
plcosh +fY

T o i .(24)

fL cosh \/_

In terms of the dimensional variables, (24) takes the
following form in which we leave f dimensionless
and denote the Brinkman velocity through the

porous medium by, u g :

h? le cosh \/_y/h—| .25
fu |_ cosh \/_ J

The maximum velocity, u,,, ,occursaty =0 and is
given by:

;c, = 0 and (23) becomes:

ug = —

h2p T ]
(Ug)max = ——X]1- I ...(26)
fu | cosh \/TJ
If the dimensional form of f
2

h
f= (DT , equation (25) takes the form:

[ |

| cosh £y|
D k|

4 = -1 —— . .27

s cosh gh

R

Darcy Velocity

When the flow is of the seepage type, then it is
governed by Darcy’s law. In this case, viscous shear
effects are ignored and the no-slip on the solid plates
is no longer valid. We can obtain the dimensionless
Darcy velocity from (21) by setting to zero the
viscous shear term, as:

is used, that is

U--—. ...(28)

Now, from up =u_ U, where u, is the

dimensional Darcy velocity, and equation (28), we
get:

2
h
Up —upU = —u o P ..(29)
f fu
Using f = h’p /k in(29), we obtain:
K
Up = - —X ..(30)
ou
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and upon dividing (30) by u , we obtain:

2
h"py.

fuung

=f/f=1. ...(3DH

Uup /ug = -

Equation (31) provides us with the following
observation.

Observation 1: Darcy velocity u, is the same as

the mean velocity, u . This is a constant, uniform
velocity across the channel. Furthermore, the
maximum Darcy velocity (uy),., IS also the mean
velocity.

Navier-Stokes Velocity

If + =0, that is if k » «, equation (21)
reduces to the Navier-Stokes flow under Poiseuille
conditions. Now, taking f =o in (21), we obtain

the following Navier-Stokes solution satisfying U(-
1)=U(1)=0, written in terms of the dimensional
variables, wherein we denote the Navier-Stokes

velocity by u , :

Py
uN=——[h2—y2] ...(32)
2p
The maximum velocity, (uy)
and is given by:

occursaty = 0

max !

hZ
Py ...(33)

(uN )max == 2u

V. VOLUMETRIC FLOW RATES AND
EFFECTIVE VISCOSITY

The Brinkman volumetric flow rate through

the porous medium is denoted here by q,, and

defined by:
Bl 1 ol ]
h hIhpxlcosh \/?ylh ldy 72h px{litanh \/?}
h Wl

0, = dy =
5 = [ ,j fu | cosh 4 f J
..(3%)

The Darcian volumetric flow rate through
the porous medium is denoted here by ., and

defined by:

" " e 2h®

Py- Py
= fu.dy = [- dy = — . ...(35
Qo I L -[ fu g fu ( )

-h -h

Upon using (31) in (35), we obtain

2hkp

=2u

Q, = - h ...(36)

ou

The Navier-Stokes volumetric flow rate is denoted
by @, ,and given by:

h

n 3
Q= fudr = [ 2=h 7l 2“3—;’ -(37)
~h ~h

Brinkman’s Effective Viscosity in Relation to
Base Fluid Viscosity:
In order to find the effective viscosity,

ug , We replace 4 by u, and replace Q, in (37)
by @, of (34). This is equivalent to saying: If the
Navier-Stokes volumetric flow rate q, across the

channel is replaced by the Brinkman volumetric
flow rate under the same driving pressure gradient
and channel depth, what is the corresponding fluid

viscosity, u, ?

We thus have:

72h3px ut ut

fo 3Qg i tanh \/?:3\/?—3Ianh \/?
3-3————
0

312

...(38)

Brinkman’s viscosity factor, 1, , Wwith

respect to Navier-Stokes base fluid is defined as:

3/2

f f
tanh \/T ) 3\/7—3tanh \/T
-3 —
Jr

2 ...(39)

Hg
BN T~
i

Darcy’s Effective Viscosity in Relation to Base
Fluid Viscosity:

In order to find Darcy’s effective viscosity,
4y , we replace 4 by u, and replace qQ, in (40)
by @, of (37).

* 2h3px fu
Hp =~ ="
3Q, 3
Darcy’s viscosity factor, i, , with respect to
Navier-Stokes base fluid, is thus obtained by
dividing (40) by » , namely:

...(40)

dpy = ———x Ko _ T (41

In terms of u,, «, takes the form, obtained by

2
substituting (36) in (40): " = - h Py

Up
An expression for the Darcy pressure gradient is
obtained from (40) or (41) and is of the form:
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p, =——o¥o __ M ..(42)

V. FLOW LIMITS AND MEAN
VELOCITIES

Viscous Flow Limit

Viscous flow limit corresponds to 4., =1,
or ugy = u.ltisreached when f — o, or when the
permeability approaches infinity, k — « . When
f - 0, the flow approaches the Navier-Stokes flow
and the viscous flow limit is reached. In this case, as

\/f_ao, tanhx/f_e\/f_f;/T and

3/2

3\/7—3tanh\/f_ 3\/7—3(\/T—f\/7

Darcian Flow Limit
The Darcian flow limit corresponds to

Agy =0, OF x =o0. It is reached when the

permeability is small, or k — 0. This corresponds to
large values of f. The pressure gradient term can be
written as:

h’p, fyf ~ f
MU B \/f_—tanh \/T_litanh \/T
B

Now, for large JT M
Jr

..(44)

>0 and the

pressure gradient takes the form

- = f. ...(45)
HU
This Darcian flow limit depends on Darcy number
(Da) and the porosity, 0, since
t=h’p/k=——=2 Equation (45) can thus be
Da K
written in the form
P ik ...(46)
aug

and the Darcy permeability may be expressed in the
following form:

= 2om ..(47)
Px

while the Darcy number can be expressed as:

K = Da = - 22im ...(48)

It is clear from (47) and (48) that the
permeability and Darcy number, respectively, are
tied to the medium properties of porosity and
channel depth, the driving pressure gradient, and the
fluid viscosity. However, the question of how high
or low the Darcy number can be chosen in order to
make Darcy’s law valid, remains to be answered. In
what follows we attempt to provide a partial answer
in terms of the factor f.

Following Bear [4], we express the permeability in
the form

k = ...(49)
3
From (47) and (49) we have:
2
K_h _ ainm ...(50)
® 3 Py

hence we obtain the following expression for the
fluid viscosity:

g —Px .31

Now, from (50) and the knowledge that f = h%p /k ,
we obtain

3
f=hplk=—h=3. ...(52)
h

Upon using f = 3 in equation (40), namely,

3
. 2nh f .
py =P 2 e obtain .y - u.
3Q,

The above analysis furnishes the following
observation.

Observation 2: In Darcy’s flow, the concept of
effective viscosity is irrelevant, or the “effective
viscosity” is the same as the base fluid viscosity.
Furthermore, the value of f = 3 represents the
threshold for validity of Darcy’s law. With this
knowledge, we can determine the value of porosity
below which we can assume Darcy’s law to be valid.

Mean Velocity

The mean velocity in the channel is the
volumetric flow rate per unit depth of the channel.
That is,
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u, ==, ...(53)
2h

For Navier-Stokes flow, we have

2h3px
3 h?
PP S R - S ...(54)
2h 2h 3u

as:

- 2 =3u . (55)

For porous medium and the Brinkman flow, we
have:

2
" :Q_B:7h P, 373tan
" 2h 3 fu

:/T\/T} .(56)

The pressure gradient is expressed as:

h’p, styff ) 3f 57)
HUp, \/f_—tanh \/f_7 1 tanh \/T .
i

Now, using equation (43), we see that as

f3l2 3f3/2

\/f_—tanh\/f__)l,\/f_—tanh\/f__)sl
2

h
Hence, - Px _ 3 when Jf > 0:and
MU

h2
-—p,=3u. ...(58)

Un

This emphasizes the fact that equation (57) reduces
to (55) as4f - 0, and the Brinkman flow
approaches the Navier-Stokes flow.

The Darcian mean velocity has been obtained from
equation (29), and is equal to the Darcy velocity, u
namely

h
TR ...(59)

fu

and the Darcy pressure gradient is thus expressed as:

- . ...(60)

Upon using the threshold of validity of
Darcy’s law, that is f = 3, we obtain transition to
Brinkman’s flow, and equation (59) yields

thX

Unp

—3u . ... (61)

The above analysis furnishes the following
observation.

Observation 3: Equations (55), (58) and (61)
suggest that the Brinkman pressure gradient (with
appropriate scaling with respect to the relevant mean
velocity and channel depth) approaches the Navier-
Stokes pressure gradient when f = 0, while the Darcy
pressure gradient approaches the Brinkman pressure
gradient when f = 3.

VI. RESULTS AND DISCUSSION
Tables 6(a) and 6(b) provide a listing of the

® (uy),. forh/d=10 and h/d=20,

(h?p,)

respectively. The Tables demonstrate the expected
increase inthis quantity with increasing porosity,
thus indicating an increase in (u,),, Wwith
increasing porosity for a given combination of
u
(h*p,)
consistently decrease with increasing h/d. These

trends persist for all geometric factors considered.
Tables 7(a) and 7(b) provide a listing of the values

of ——“—(g),, for h/d=10 and h/d=20,
(h"py)

respectively. These Tables also demonstrate the

expected increase in this quantity with increasing

porosity, thus indicating an increase in (ug),,., With

max

increasing porosity for a given combination of

U
(h*p,)
consistently decrease with increasing h/d. These
trends persist for all geometric factors considered.
Results obtained when using Ergun’s equation are
close in values to those obtained when using the
Kozeny-Carmen relation.

values of -

The maximum Darcy velocity values

The maximum Brinkman velocity values
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Granular Consolidated | Unidirectional | Ergun’s Kozeny-Carman
y . : . N . @ Media Media Fibre Bed Equation Relation
Granular Media | Consolidated | Unidirectional | Ergun’s Kozeny-
@ Media Fibre Bed Equation Carman 0.1 1.743989234 | 1.392278888 5634675477 2057613169 | 1.714677641
Relation x10°7 10-¢ % 10°¢ x 1077 x 10~7
0.5 8.415313721 | 1.464043101 1.26374674 1.666666667 1.388888889
0.1 6.975956935 5.569115554 2.253870191 8.230452675 | 6.858710562 x10-¢ <10 x10°* x10°* x10-*
-7 - -5 -7 -7 0.9 1.35508259 0.696339353 1.540107131 1.350000133 1.125000113
x 10 x 107¢ x 10 x 10 x 10 ‘oo gt o X103 o
0.5 3.366125488 5.856172406 5.05498696 6.666666667 | 5.553555356 0.95 2.7030869958 | 1.576436686 2.50806084 0.0060166358 | 0.005013881094
%1075 %1075 %1073 %1073 %1075 %107 x 102 %1074 65
0.9 5420330358 3878535741 6.160428524 5.40000053 2.50000045 0.99 0.001119317 | 0.008166503204 | §.437400010-% | 0.1173197961 | 0.1011172487
% 10~* x 104 x 10~4 x 1073 x 103 0.995 0.001911283 | 0.01734675428 | 0.00127217149 0.3048193066 | 0.2824226878
0.95 1117234799 6305746742 1123222337 0.024066664 0.020055553 0.999 250506137462 0.08166484371 0.00308899984 0.4877739019 | 0.4853983784
x 1073 x 1073 x 1073
0.99 | 0.004477269797 | 0.032667034 | 3.374999958 0.54000054 | 0.45000045
x 1073

0.995 | 0.007645133625 | 0.06945732275 | 0.005088685960 | 2.640066667 | 2.200055556
0.999 | 0.02475000000 0.3505510871 0.01235599974 | 66.53340000 | 55.44450001

i
Table 6(a) Values of 1/f or-———u,)
2 D / max
(h"py)
when h/d = 10
Granular Media | Consolidated | Unidirectional | Ergun’s Kozeny-
@ Media Fibre Bed Equation Carman
Relation
0.1 1743580234 1352278888 5.634675477 2057613168 | 1.714677641
x 10~ %1078 x10¢ x 10~ x 10~
0.5 8415313721 1464043101 126374674 1666666667 | 1.388888889
x 1076 x 1073 x 1075 x 105 x 1075
0.9 1.35508259 9.696339353 1540107131 1350000133 | 1.123000113
x 1074 % 1075 %107 x107% %1072
0.05 | 2.793086998 1576436686 2.808060842 6016666165 | 5.013888471
x 10 x 1072 x107% x 10~ x 1072
0.99 | 0.001119317449 | 0.00816673867 | 8.437499895 0.135000135 | 0.11250012
9 x107*
0.005 | 0.001911283406 | 0.01736433069 | 0.001272171450 | 0.6600166665 | 0.5500138888
0.990 | 0.006187500001 | 0.08763777175 | 0.003088999936 | 16.63335000 | 13.86112500

Table 6(b) Values of 1/f or-—*—qu,),,
(h"p,)
when h/d = 20
1! 1]
Table 7(a) Values of —|1-————|or

fL cosh\/f_J

— A (ug),. Whenh/d =10

2
(h"p,)
Granular Consolidated Unidirectional | Ergun’s Kozeny-
@ Media Media Fibre Bed Equation Carman
Relation
0.1 6.975936923 5369115554 2253870191 8230452675 | 6.858710562
x 10~ x 10~¢ x107% x 10~ x 10~
0.5 3366125488 5856172406 505498696 6. 7| 555555555
x 10~% x 10~% x 10~% x10-% x10~%
0.9 5420330358 3878535741 6.160428524 0.0053999872 | 0.0044999974
x 10~ x 10™% x 107
0.95 | 1.117234799 0.006305703920 | 1.123224337 0.0239902854 | 0.0200211501
x 1077 x 102
0.99 | 0.004477266500 | 0.03240864891 0.003374999732 | 0.2801265977 | 0.2570934366
0.995 | 0.007644968641 | 0.06633376603 0.005088677651 | 04316249033 | 0.4200852118
0.999 | 0.02466408936 | 02253243076 0.01235293855 | 04968877718 | 0.4962698307

il 1
—|1- lor

1
fL cosh\/f_J

Table 7(b) Values of

% (u.)  whenh/d=20
(th ) B / max

Tables 8(a) and 8(b) provide a listing of the values

of - —%X—q,for hd=10 and h/d=20,
(2h°p,)
respectively. These Tables demonstrate an increase
in this quantity with increasing porosity, thus
indicating an increase in the volumetric flow rate

Q g With increasing porosity for a given combination

of —“ . The maximum Brinkman volumetric
(2h°p,)

flow rate values consistently decrease with

increasing h/d. These trends persist for all geometric

factors considered. Results obtained when using

Ergun’s equation are close in values to those

obtained when using the Kozeny-Carmen relation.

*

L . f
The viscosity ratio 4, = “f-= —————

H 3_3ta1nh\/f_ls
Jr

illustrated in Tables 9(a) and 9(b) for h/d=10 and
h/d=20, respectively. Qualitative behavior of the
viscosity ratios is illustrated in Figures 2 and 3.
Tables 9(a) and 9(b) demonstrate an increase in the
viscosity ratio with increasing h/d, and a decrease
with increasing porosity, for all geometric factors
considered. When using Ergun’s equation and the
Kozeny-Carmen relation, the viscosity ratio gets
closer and closer to unity as porosity gets closer and
closer to unity (the viscous flow limit). When using
other geometric factors, the viscosity ratio is still far
from unity for the values of h/d tested. This points
out the need to further decrease the value of h/d
when these porosity functions are employed. While
the case of consolidated media renders moderate
results for the viscosity ratio, the value remains close
to 2 even when the porosity is close to unity.

In terms of the transition from a Darcy regime to a
Brinkman regime, the value of f = 3 is reached when
the porosity is between 0.98 and 0.985 for the
Ergun’s equation and the Kozeny-Carmen relation,
when h/d = 10, and a porosity between 0.991 and
0.992 for h/d = 20. For consolidated media, f =3 is
reached between the porosity values of 0.998 and
0.999, for h/d = 10. It is not reached for h/d = 20.
For granular media and unidirectional fibres, f = 3
cannot be reached for the values h/d = 10 or 20. This
may be an indication that for these porous structures,
transition from Darcy to Brinkman regime occurs at
values higher than f = 3. Furthermore, these results
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emphasize the importance of the geometric factors in
determining the VlSCOSity ratio and deSCriblng the Granular Consolidated | Unidirectional | Ergun’s Kozeny-Carman
- 3 Media Media Fibre Bed Equation Relation
Brinkman flow.
0.1 1.91212531 2.396984663 59298.26241 1.62073518 1.944805318
x 10¢ x 10% x 10% x 10¢
Granular Consolidated Unidirectional Ergun’s Kozeny-
v Media Media Fibre Bed Equation Carman 0.5 3972556814 | 2285545139 | 26470.69418 20081.98436 | 24089.77730
Relati
clation 09 2488.846838 | 3471.911376 6493.054800 256.3317877 | 306.5792478
0.95 1213.706779 | 220.1898310 1207.289679 60.06038053 | 71.54824666
0.1 6.9701305 0.00000555597 0.0000224317 8.222086x 10~ 6.85303
10-7 x 10=7 0.99 308.1086796 | 44.87085086 406.8805451 3.883866790 | 4.446812713
0.5 0.0000334659 [ 0.0000581135767 | 0.000050190468 | 0.000066122335 | 0.0000551414 0.995 182.3760386 | 22.10995046 271.7104170 1.601947276 | 1.721425924
09 0.0005294136 | 0.0003802151864 | 0.000600752539 | 0.005003183133 | 0.0041981312 0.999 58.47145752 | 5.397752753 114.2602332 1.024041205 | 1.028847808

0.95 0.0010798911 | 0.005805015388 | 0.001085579991 | 0.02033311723 | 0.0172153380

0.99 0.0041776690 | 0.02676297168 | 0.003178930180 | 0.1921559994 0.1772746638

0.995 | 0.0069766702 | 0.05117053348 | 0.004725684414 | 0.2895422254 0.2821444703

0.999 | 0.0208563206 | 0.1566939481 0.01098253719 | 0.3313414418 0.3309459473

[ h 1
Table 8(a) Values of %| 1- M\ or
L F

- —*% ., whenh/d =10

3 dp
(2h™—)
dx
14 Granular Consolidated | Unidirectional Ergun’s Kozeny-
Media Media Fibre Bed Equation Carman
Relation
0.1 1.7432609 0.00000139063 | 0.0000056213001 | 2.0566798 1.713967615
x 1077 1077 x 1077
0.5 0.0000083909 | 0.00001458441 | 0.0000125925421 | 0.000016598 | 0.000013837128
0.9 0.0001339308 | 0.00009600859 | 0.0001520994239 | 0.001300397 | 0.001087266460

0.95 0.0002746407 | 0.00151384526 | 0.0002761005409 | 0.005549970 | 0.004658860963

0.99 0.0010818693 | 0.00742872771 | 0.0008192412672 | 0.085825120 | 0.07496005674

0.995 0.0018277254 | 0.01507616826 | 0.001226796297 | 0.208080090 | 0.1936379189

0.999 0.0057007871 | 0.06175409443 | 0.002917317111 | 0.325507735 | 0.3239870180

[ h
Table 8(b) Values of %| 1- fan \/T when h/d =
L

:
—|
v

@ Granular Consolidated | Unidirectional Ergun’s Kozeny-Carman
Media Media Fibre Bed Relation
Equation
0.1 4.78231125 59005.49180 14859.92323 4.05367757 4.86402826% 10°
x 10° x 10%
0.5 9960.370295 | 5735.894294 6641.367314 5041.160906 | 6045.057197
0.9 629.6274019 | 376.6965266 554.8596330 66.62425190 | 79.40040824

0.95 308.6730837 | 57.42161064 307.0555245 16.39361685 | 19.36257849

0.99 79.78931024 | 12.45501947 104.8570791 1.734701672 | 1.880321340

0.995 47.77828414 | 6.514165686 70.53652005 1.151242562 | 1.181427344

0.999 | 15.98236523 | 2.127289135 30.35121371

Table 9(a) Values of

1.006011598 | 1.007213825

*

Hg

falf
M 3\/f_—3tanh \/f_

p) when h/d =10

BN ~

Table 9(b) Values of
) foff
Agy =B —— ¥ whenh/d=20
M 3\/1‘_7 3 tanh f
ASN 350.00 )
300.00
250.00

200.00 —a— Granular Media

150.00 —#— Consolidated Media

Unidirectional Fibre Bed
100.00 .
Ergun’s Equation

50.00 == Kozeny-Carman Relation

0.00
F PSS S
TP TSI P

()
Figure 2 Brinkman Viscosity Ratio, h/d=10

A 1,400.00
BN
1,200.00 %
1,000.00
—+— Granular Media
800.00
—=— Consolidated Media
600.00 Unidirectional Fibre Bed
Ergun’s Equation
400.00 == Kozeny-Carman Relation
200.00
0.00
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PR FFF P T TS S [0)

Figure 3 Brinkman Viscosity Ratio, h/d=20

VII.  CONCLUSION

In conclusion, we have provided in this
work a method of estimating the viscosity factor
(hence Brinkman’s effective viscosity) based on
using different geometric factors (porosity functions)
under Poiseuille flow. The most informative results
are obtained when using Ergun’s equation and the
Kozeny-Carmen relation, where results indicate that
the viscosity factor approaches unity (or the
effective viscosity approaches the base viscosity) as
porosity approaches unity (the viscous flow limit). In
the analysis we have also determined a threshold
value of f = 3 to serve as the transition from Darcy
to Brinkman flow regime. This value corresponds to
value of porosity higher than 98%, thus emphasizing
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that Brinkman’s equation is possibly valid for high
values of porosity.
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