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ABSTRACT 
In this work we address the quantification of Brinkman’s effective viscosity, which arises due to the presence of 

the porous medium and its effect on increasing or decreasing the fluid viscosity in relation to the base fluid 

viscosity. This work is motivated in the main part by the lack of consensus in the available literature on the 

ranges of effective viscosity. To this end, this work provides a model of quantifying the effective viscosity by 

incorporating the porous microstructure in the volume-averaged Navier-Stokes equations. Extensive analysis and 

testing are provided in the current work which considers five different porous microstructures, and the effective 

viscosity is quantified in each case under Poiseuille flow.  
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I. INTRODUCTION 
In spite of the popularity of Darcy’s law in 

the study of groundwater flow, it suffers some 

limitations that include not accounting for 

microscopic inertia that arises due to tortuosity of 

the flow path, [1], [2], [3]. Furthermore, the absence 

of viscous shear term in Darcy’s law limits its ability 

to account for viscous shear effects that are 

important when a macroscopic, solid boundary is 

encountered and on which the no-slip condition is 

imposed. Darcy’s law has been argued to be valid in 

low permeability, low porosity media where 

variations at the microscopic, pore-level length scale 

are negligible at the macroscopic (say, thickness of a 

porous layer) length scale. 

In 1947, Brinkman [4] introduced an 

extension to Darcy’s law by including a viscous term 

to account for the viscous shear effects that are 

important in the thin boundary layer near a 

macroscopic boundary. Accordingly, equations 

governing the steady flow of a Newtonian fluid 

through a porous medium composed of a swarm of 

particles fixed in space are given by the following 

equation of continuity, and linear momentum 

equation that is due to Brinkman [4]:  

Conservation of Mass: 

 .0 u


                                                          …(1) 

Conservation of Momentum (Brinkman’s Equation): 

0
2*


 u

k
up


                                     …(2) 

where u


 is the ensemble-averaged velocity,   is the 

base fluid viscosity, 
*

  is the viscosity of the fluid 

saturating the porous medium (i.e. effective 

viscosity), k is the permeability and p is the 

pressure. The term u
k


 is the Darcy resistance, and 

the term u
2*

 is the viscous shear term that 

facilitates imposition of a no-slip velocity condition 

on solid boundaries. It is clear that when 0
*
 , 

Brinkman’s equation (2) reduces to Darcy’s law. 

It has been long realized and documented 

that there is an increased effective shear viscosity in 

constricted geometries (such as when a dilute system 

is present, or as in the pore structure of a porous 

medium), and close to solid surfaces. Experimental 

evidence has been summarized and reported in the 

work of Henniker, (1949), (cf. [5] for reference). The 

literature also reports on experimental and 

theoretical investigations that provide estimates for 






*

  from less than unity to as high as 10, and 

employ a number of configurations that include flow 

over spheres, flow in the presence of bounding 

walls, flow over arrays of circular or elliptic 

cylinders, and flow through channel-like porous 

media. Other authors believe that the effective 

dynamic viscosity arises due to volume averaging 

and provided detailed theoretical analysis of its 

quantification. Alas; the reported studies provide no 

definite answer as to what the value of   should 

be. However, many agree that the presence of solid 

walls bounding the porous flow domain, and the 

geometric configurations of the porous material play 

an important part in the value of  , (cf. [6], [7], [8], 

[9], [10], [11], and the references therein).  

A number of studies have investigated the validity of 

Brinkman’s equation and a number of excellent and 

sophisticated analyses have been carried out to 

quantify the effective viscosity, 
*

 . Some argue that 

the viscosity factor, or the ratio,  , could be greater 

than unity or less than unity, (cf. [1], [12] and the 

references therein), or could be taken as unity (as 
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favoured by Brinkman [4]). Brinkman initially used 

Einstein’s formula for the viscosity of suspension, 

[13], [14], to relate fluid viscosity and the effective 

viscosity, namely 

 )]1(
2

5
1[

*
                     …(3) 

where   is the effective porosity of the medium 

(i.e. ratio of volume of interconnected pores to the 

bulk volume of the medium). Table 1, below, is 

produced using equation (3). 

 
 

  






*

 = )1(
2

5
1 

 

0
 5.3

 0.01 3.475 

0.5 2.25 

0.9 1.25 

0.99 1.025 

1 1 

Table 1. Viscosity Factor   Based on Einstein’s 

Law for Viscosity of a Suspension 

Table 1 illustrates that when 1 , then 1 , or 

 
*

. This is the Navier-Stokes flow limit, as this 

case corresponds to the flow of a Newtonian fluid in 

free-space, that is, in the absence of the porous 

matrix. When 0 , 
2

7*
 . Clearly, this 

should be the Darcy flow limit. However, 

Brinkman’s equation is supposed to reduce to 

Darcy’s law when porosity is small and 0
*
 . 

This could be an indication that equation (3) does 

not provide a good measure of the effective viscosity 

in porous media.  

Many investigators have attempted to 

resolve the question of effective viscosity. Some 

argue that equation (3) is valid for high porosity 

media (that is, porosity being close to unity). As 

porosity of the medium decreases, viscosity of the 

saturating fluid increases. Indeed, the literature 

includes studies and experiments that report 

viscosity factors ranging from less than unity to 

approximately 10, (cf. [7], [10], [11] and the 

references therein). In a recent work, Breugem [12] 

provided elegant and thorough analysis of the 

effective viscosity of fluid in a channel-type porous 

medium and provided the following effective 

viscosity estimate, referred to here as Breugem’s 

Estimate: 


















7

3
;0

7

3
;)

7

3
(

2

1

*





                                    …(4) 

hence, the viscosity factor takes the form:  

).
7

3
(

2

1
*

 



                                           …(5) 

We produce Table 2 of viscosity factor, below, 

using equation (5): 

 
 

  






*

 = )
7

3
(

2

1


 

0.01 0 

0.4 0 

0.429 0.0002142857 

0.5 0.0357142857 

0.95 0.2607142857 

0.99 0.2807142857 

1 0.2857142857 

Table 2. Viscosity Factor Based on Breugem’s 

Estimate 

 

Table 2 shows that the effective viscosity is 

always less than the base fluid viscosity. When 

1 , Breugem’s formula yields an effective 

viscosity that is less than 30% of the base fluid 

viscosity. However, one expects that when 1  the 

Navier-Stokes flow limit should be reached and 

 
*

. 

Liu et al. [10] studied theoretically and 

numerically the effects of bounding solid walls on 

slow flow over regular, square arrays of circular 

cylinders between two parallel plates. Their results 

indicate that, between the two limits of the Darcian 

porous medium and the viscous flow, the magnitude 

of the viscosity factor   needs to be close to unity 

in order to satisfy the non-slip boundary conditions 

at the bounding walls.  

In summary, there seems to be no 

consensus as to what the viscosity factor should be, 

nor as to how the effective viscosity could be 

computed, and how it depends on the porosity of the 

medium. However, it is agreed upon that the 

effective viscosity depends on factors that include 

the type of fluid, the speed of the flow, porosity and 

permeability of the medium, and the presence of 

bounding solid walls to the medium. 

The above lack of consensus motivates the 

current work in which we provide analysis of the 

effective viscosity in flow through porous media. 

This will be accomplished by analyzing a general 

model of flow through isotropic porous media that 

was developed by Du Plessis and coworkers, [1], 

[2], [15], [16], based on intrinsic volume averaging. 

We devise a method for evaluating the effective 

viscosity under Poiseuille flow based on analyzing 

the geometric factors (porosity functions) of five 

different types of porous media. Expressions for the 

effective viscosity, mean velocity, and maximum 

velocity will be obtained. We also evaluate the 

viscous flow limit and the Darcy limit, and derive a 
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threshold for the transition from Darcy’s to 

Brinkman’s flow regimes. Our goal is to analyze the 

effect of porosity function on the effective viscosity, 

with the following objectives: 

1) Study the viscosity factor under Poiseuille flow. 

2) Analyze the effect of the porous microstructure 

on the viscosity ratio by considering different 

types of porous media. 

3) Quantify the effects of porosity function on the 

viscosity ratio. 

4) Derive expressions for the velocity 

distributions, the mean and maximum velocities 

attained, flow rates, and the necessary driving 

pressure gradients for the cases of flow through 

porous media and through free-space. 

5) Derive expressions for the viscous flow limit 

and the Darcy flow limit.  

 

II. MODEL EQUATIONS 
A number of authors have derived 

equations of flow through porous media by 

averaging the Navier-Stokes equations over a 

representative elementary volume, REV, and 

quantifying the frictional forces exerted by the 

porous medium on the traversing fluid through an 

idealized description of the porous microstructure, 

[1], [2], [15], [16]. Letting V be the bulk volume of 

an REV (that is, the combined volume of the solid 

and pore space), and 


V the volume of pore space, 

then porosity of the medium is defined by 

V

V
  .                         …(6) 

Now, for a fluid quantity of interest, G, the 

volume average of G, that is the average of G over 

the bulk volume, V, is defined by: 



V

GdV
V

G
1

                                  …(7) 

and the intrinsic volume average of G, that is the 

average of G over the pore space, 
V , is defined by 






V

GdV
V

GG
1

.                    …(8) 

Deviation of the average of G from the true quantity 

G is defined by: 

 GGG
                                             …(9) 

and the relationship between the volume average and 

the intrinsic volume average of G is given by: 

  GGG                                    … (10)                                                                                                                            

The Darcy resistance term can be argued to 

be dependent on porosity function in order to 

account for different types of porous structures. 

What gives rise to the Darcy resistance term in the 

process of intrinsic volume averaging is a surface 

integral of the form, [1], [2]: 

 

 

S

dSnunp
V

][
1 

                                …(11) 

where


p  is the pressure deviation, n


is a unit normal 

pointing into the solid, and S  is the surface of the 

solid within the REV that is in contact with the fluid. 

Through their concept of representative unit 

cell, RUC, Du Plessis and Masliyah, [1], [2], 

quantified the integral in (11) with the help of a 

geometric porosity function. In the absence of 

inertial and gravitational effects, Du Plessis and 

Masliyah’s averaged equations take the following 

form for constant porosity media, written in terms of 

the specific discharge, q


: 

0
2

 qFqp









                             …(12) 

where 


 uq


  and 


u


 is the intrinsic averaged 

velocity, 


p  is the intrinsic averaged pressure, F  

is a porosity function that depends on the porous 

microstructure and tortuosity of the medium. Du 

Plessis and Masliyah, [1], [2], argue that 

hydrodynamic permeability inclusive of nonlinear 

microscopic inertial effects is given by 
F

k


 . 

Hydrodynamic permeability is the same as the 

velocity-independent Darcy permeability for low 

Reynolds number. Upon using 
F

k


  in (12), we 

obtain 

0
2

 q
k

qp
 






.                               …(13) 

Now, comparing (13) with (2), we see that if we can 

identify the Brinkman ensemble averaged velocity, 

u


, with the specific discharge, q


 and the Brinkman 

pressure, p , with the intrinsic averaged pressure, 


p , then 




 

* . However, this may not be the 

case since Brinkman’s velocity is an intrinsic 

velocity. We therefore write (13) in terms of the 

intrinsic averaged velocity, 
u


, as: 

0

2
2


 


 u

k
up                     …(14) 

Removing the subscript  , and dividing equation 

(14) by the constant porosity  , we obtain: 

0
2


 u

k
up


                                  …(15) 

or in the form 

0
2


 uFup                              …(16)
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Brinkman’s intrinsic velocity and pressure 

in equation (2) can thus be identified with the 

intrinsic velocity and pressure of equation (16). We 

point out that while equation (2) involves the 

effective viscosity,
*

 , equation (16) does not 

include 
*

  explicitly. However, equation (16) 

includes a porosity function, F. Porosity function (or 

geometric factor) F is dependent on factors such as 

the porous microstructure, the constituents of the 

porous matrix (diameter of solid particles), the pore 

diameter, the porosity of the medium (defined in 

equation (6)), and tortuosity, T, of the medium 

(defined as the ratio of the pore volume to the pore 

area). A number of expressions for F are available in 

the literature. Some of these porosity functions are 

listed in Table 3, below, which also gives the 

corresponding expressions for the hydrodynamic 

permeability, [15], [16].  

 

 
Table 3. Geometric Factors and Hydrodynamic 

Permeability. 

p
d is the average pore diameter in a channel-like 

porous material. 

d is a microscopic characteristic length. 

md is a median diameter of spherical particles. 

In the analysis to follow, we will study the 

viscosity factor under Poiseuille flow then recover 

the effective viscosity and view it through analysis 

of different porosity functions.  

 

III. PLANE POISEUILLE FLOW 
Consider the flow driven by a constant 

pressure gradient, between parallel plates located at 

y = -h and y = h, as shown in Figure 1. 

 

 
Figure 1.  Representative Sketch 

 

When the channel configuration is filled 

with a fluid-saturated porous material and viscous 

shear effects are taken into account, the flow is 

governed by equation (16), which reduces to the 

following form in which we use
dx

dp
p x  : 

u  xpFu


1
 .                                              …(17)

    

Boundary conditions are no-slip on solid walls, 

namely 

0)()(  huhu                                            …(18)                                                                                                      

We non-dimensionalize equations (17) and (18) with 

respect to h, and with respect to a characteristic 

velocity (the mean velocity of the flow, m
u ) by 

defining: 

K
f

h

f

Khk
FKhkhYyUuu m


 ;;;;

22

2

                                                                          …(19) 

where k is the permeability and 
2

h

k
K   is the 

Darcy number, Da, (or dimensionless permeability). 

In addition, we define: 

.

2

m

x

u

ph
P                                                …(20) 

Equations (17) and (18) are thus expressed in the 

following dimensionless form, respectively: 

U  PfU                                                …(21) 

U(-1)=U(1)=0.                                              …(22) 

Factor Fhf
2

 that appears in (19) and 

(21) is critical in the analysis to follow. At the 

outset, we provide Tables 4(a)-4(e) of its values, for 

a range of porosities, using the expressions for the 

geometric factor F of Table 3. These tables provide 

values for f as a function of h/d, then specific values 

are provided when h/d takes on the values 10 and 20, 

for the sake of illustration.  

It is clear from Tables 4(a)-(e) that f 

increases with increasing h/d, and decreases with 

increasing porosity, until it reaches a value of zero 

when 1  (a case that corresponds to flow in free-

space, that is in the absence of a porous matrix). In 

the analysis to follow, the value f = 0 corresponds to 

the Navier-Stokes (viscous flow) limit. 
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Table 4(a). Values of f for a range of porosities 

for granular media. 

 

 
Table 4(b). Values of f for a range of porosities 

for consolidated media. 

*Approximated using 3T = 1+2  

 

 
Table 4(c). Values of f for a range of porosities 

for unidirectional fibre bed. 

 

 
Table 4(d). Values of f for a range of porosities 

using Ergun’s equation. 

 

 

Table 4(e). Values of f for a range of porosities 

using Kozeny-Carman relation. 

Brinkman Velocity Profile 

      General solution to (21) is given by: 

f

P
YfcYfcU  sinhcosh

21 .      …(23) 

Using (22) in (23) we obtain 

0;

cosh
21
 c

ff

P
c and (23) becomes: 

















 1

cosh

cosh

f

Yf

f

P
U .                           …(24)

      

In terms of the dimensional variables, (24) takes the 

following form in which we leave f dimensionless 

and denote the Brinkman velocity through the 

porous medium by, Bu : 



















f

hyf

f

ph
u

x
B

cosh

/cosh
1

2


.                    …(25) 

The maximum velocity, max
u , occurs at y = 0 and is 

given by: 



















ff

ph
u

x
B

cosh

1
1)(

2

max


.      …(26) 

If the dimensional form of f  is used, that is 

k

h
f

2


 , equation (25) takes the form: 



























h
k

y
kkp

u
x

B






cosh

cosh

1 .                   …(27) 

Darcy Velocity 

      When the flow is of the seepage type, then it is 

governed by Darcy’s law. In this case, viscous shear 

effects are ignored and the no-slip on the solid plates 

is no longer valid. We can obtain the dimensionless 

Darcy velocity from (21) by setting to zero the 

viscous shear term, as: 

f

P
U  .                                                          …(28) 

Now, from Uuu mD  , where Du  is the 

dimensional Darcy velocity, and equation (28), we 

get: 

f

ph

f

P
uUuu

x
mmD

2

 .                 …(29) 

Using khf /
2
  in (29), we obtain: 



x
D

kp
u                                                        …(30) 
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and upon dividing (30) by
m

u , we obtain:    

1/
.

/

2

 ff
uf

ph
uu

m

x
mD


.                    …(31)

   

Equation (31) provides us with the following 

observation. 

Observation 1: Darcy velocity 
D

u  is the same as 

the mean velocity, 
m

u . This is a constant, uniform 

velocity across the channel. Furthermore, the 

maximum Darcy velocity 
max

)(
D

u  is also the mean 

velocity. 

 

Navier-Stokes Velocity 

If 0f , that is if k , equation (21) 

reduces to the Navier-Stokes flow under Poiseuille 

conditions. Now, taking 0f  in (21), we obtain 

the following Navier-Stokes solution satisfying U(-

1)=U(1)=0, written in terms of the dimensional 

variables, wherein  we denote the Navier-Stokes 

velocity by 
N

u : 

 22

2
yh

p
u

x

N



                                         …(32) 

The maximum velocity, 
max

)(
N

u , occurs at y = 0 

and is given by: 

.
2

)(

2

max


x

N

ph
u                                             …(33) 

 

IV. VOLUMETRIC FLOW RATES AND 

EFFECTIVE VISCOSITY 
  The Brinkman volumetric flow rate through 

the porous medium is denoted here by 
B

Q , and 

defined by: 







































 

 f

f

f

ph
dy

f

hyf

f

ph
dyuQ

x
h

h

x
h

h

BB

tanh
1

2

cosh

/cosh
1

32



.                                                                         …(34)          

The Darcian volumetric flow rate through 

the porous medium is denoted here by 
D

Q , and 

defined by: 

 

 f

ph
dy

f

ph
dyuQ

x

h

h

x

h

h

DD

32
2.

 


.         …(35)                                              

Upon using (31) in (35), we obtain 
 

hu
hkp

Q
D

x

D
2

2



.                                    …(36)                                                                                             

 

The Navier-Stokes volumetric flow rate is denoted 

by 
N

Q , and given by: 

 

 
 3

2

2

3

22 x

h

h

x

h

h

NN

ph
dyyh

p
dyuQ  



.      …(37)                                                                                                

 

Brinkman’s Effective Viscosity in Relation to 

Base Fluid Viscosity: 

In order to find the effective viscosity, 
*

B
 , we replace   by 

*

B
 and replace 

N
Q in (37) 

by 
B

Q  of (34). This is equivalent to saying: If the 

Navier-Stokes volumetric flow rate 
N

Q across the 

channel is replaced by the Brinkman volumetric 

flow rate under the same driving pressure gradient 

and channel depth, what is the corresponding fluid 

viscosity, 
*

B
 ? 

 

We thus have: 

.

tanh33tanh
33

3

2
2/33

*

ff

f

f

f

f

Q

ph

B

x

B










          …(38) 

Brinkman’s viscosity factor, 
BN

 , with 

respect to Navier-Stokes base fluid is defined as: 

 

.

tanh33tanh
33

2/3*

ff

f

f

f

f
B

BN











     …(39) 

 

Darcy’s Effective Viscosity in Relation to Base 

Fluid Viscosity: 

In order to find Darcy’s effective viscosity, 
*

D
 , we replace   by 

*

D
 and replace 

N
Q in (40) 

by 
D

Q  of (37). 

 

33

2
3

* 


f

Q

ph

D

x

D
 .                                      …(40)                                                                                            

Darcy’s viscosity factor, 
DN

 , with respect to 

Navier-Stokes base fluid, is thus obtained by 

dividing (40) by  , namely: 

 

.
33

2
*3

f

Q

ph
D

D

x

DN







                             …(41) 

 

In terms of 
D

u , *

D
 takes the form, obtained by 

substituting (36) in (40):
D

x

D
u

ph
2

*
 .                                                                                                         

An expression for the Darcy pressure gradient is 

obtained from (40) or (41) and is of the form: 
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.

3
22

*

h

uf

h

u
p

mDD

x


                                 …(42) 

 

V. FLOW LIMITS AND MEAN 

VELOCITIES 
Viscous Flow Limit 

Viscous flow limit corresponds to 1
BN

 , 

or  
*

B
. It is reached when 0f , or when the 

permeability approaches infinity, k . When 

0f , the flow approaches the Navier-Stokes flow 

and the viscous flow limit is reached. In this case, as 

,0f
 3

tanh
ff

ff 

  

and 

1

3
33

tanh33

2/32/3





















 ff
ff

f

ff

f
.                                                                                              

                                                                          …(43) 

Thus, .1

*







BN
 

 

Darcian Flow Limit 

The Darcian flow limit corresponds to 

0
BN

 , or 0
*
 . It is reached when the 

permeability is small, or .0k  This corresponds to 

large values of f. The pressure gradient term can be 

written as: 

f

f

f

ff

ff

u

ph

m

x

tanh
1

tanh

 

2










        …(44)                                                             

Now, for large f , 0
tanh



f

f
  and the 

pressure gradient takes the form 

 
.

2

f
u

ph

m

x



                                                    …(45) 

This Darcian flow limit depends on Darcy number 

(Da) and the porosity,  , since 

./
2

KDa
khf


 

 
Equation (45) can thus be 

written in the form
 

k
u

p

m

x
/


                                                    …(46) 

 

and the Darcy permeability may be expressed in the 

following form: 

x

m

p

u
k


                                                     …(47) 

while the Darcy number can be expressed as: 

 

x

m

ph

u
DaK

2
 


                                           …(48)                                                                                          

It is clear from (47) and (48) that the 

permeability and Darcy number, respectively, are 

tied to the medium properties of porosity and 

channel depth, the driving pressure gradient, and the 

fluid viscosity. However, the question of how high 

or low the Darcy number can be chosen in order to 

make Darcy’s law valid, remains to be answered. In 

what follows we attempt to provide a partial answer 

in terms of the factor f.  

 

Following Bear [4], we express the permeability in 

the form 

 

3

2
h

k


                                                            …(49)                                                                                                                                 

From (47) and (49) we have: 

 

x

m

p

uhk 




3

2

                                              …(50)                                                                                                                 

 

hence we obtain the following expression for the 

fluid viscosity: 

 

.
3

2

m

x

u

ph
                                                     …(51) 

 

Now, from (50) and the knowledge that khf /
2
 , 

we obtain 

 

3
3

/
2

2

2
 h

h

khf  .                                   …(52)                                                                                                    

Upon using f = 3 in equation (40), namely, 

33

2
3

* 


f

Q

ph

D

x

D
 , we obtain .

*
 

D
 

 

The above analysis furnishes the following 

observation. 

 

Observation 2: In Darcy’s flow, the concept of 

effective viscosity is irrelevant, or the “effective 

viscosity” is the same as the base fluid viscosity. 

Furthermore, the value of f = 3 represents the 

threshold for validity of Darcy’s law. With this 

knowledge, we can determine the value of porosity 

below which we can assume Darcy’s law to be valid.  

 

Mean Velocity 

The mean velocity in the channel is the 

volumetric flow rate per unit depth of the channel. 

That is,  
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h

Q
u

m
2

 .                                                          …(53)                                                                                                          

 

For Navier-Stokes flow, we have 

 





32

3

2

2

2

3

x

x

N

m

ph

h

ph

h

Q
u 



                        …(54) 

 

and the Navier-Stokes pressure gradient is expressed 

as: 

 

3

2



m

x

u

ph
.                                                   …(55)                                                                                                            

 

For porous medium and the Brinkman flow, we 

have: 

 

.
tanh

33
32

2

















f

f

f

ph

h

Q
u

xB

m


                …(56) 

The pressure gradient is expressed as: 

 

f

f

f

ff

ff

u

ph

m

x

tanh
1

3

tanh

3
  

2










.      …(57)                                                                 

 

Now, using equation (43), we see that as 

1

tanh

2/3



 ff

f
, 3

tanh

3
2/3



 ff

f
. 

Hence, 3

2



m

x

u

ph


when 0f ; and 

 

3

2


x

m

p
u

h
.                                         …(58)

      

This emphasizes the fact that equation (57) reduces 

to (55) as 0f , and the Brinkman flow 

approaches the Navier-Stokes flow. 

 

The Darcian mean velocity has been obtained from 

equation (29), and is equal to the Darcy velocity,
D

u  

namely 

D

x

m
u

f

ph
u 



2

                                            …(59)                                                                                             

 

and the Darcy pressure gradient is thus expressed as: 

 

f
u

ph

m

x




2

.                                                     …(60)                                                                                                             

 

Upon using the threshold of validity of 

Darcy’s law, that is f = 3, we obtain transition to 

Brinkman’s flow, and equation (59) yields 

3

2



m

x

u

ph
.                                                  … (61)                                                                                                                       

 

The above analysis furnishes the following 

observation. 

 

Observation 3: Equations (55), (58) and (61) 

suggest that the Brinkman pressure gradient (with 

appropriate scaling with respect to the relevant mean 

velocity and channel depth) approaches the Navier-

Stokes pressure gradient when f = 0, while the Darcy 

pressure gradient approaches the Brinkman pressure 

gradient when f = 3. 

 

VI. RESULTS AND DISCUSSION 
       Tables 6(a) and 6(b) provide a listing of the 

values of 
max2

)(

)(
D

x

u

ph


  for h/d=10 and h/d=20, 

respectively. The Tables demonstrate the expected 

increase inthis quantity with increasing porosity, 

thus indicating an increase in 
max

)(
D

u with 

increasing porosity for a given combination of 

)(
2

x
ph


.  The maximum Darcy velocity values 

consistently decrease with increasing h/d. These 

trends persist for all geometric factors considered. 

Tables 7(a) and 7(b) provide a listing of the values 

of 
max2

)(

)(
B

x

u

ph


  for h/d=10 and h/d=20, 

respectively. These Tables also demonstrate the 

expected increase in this quantity with increasing 

porosity, thus indicating an increase in 
max

)(
B

u with 

increasing porosity for a given combination of 

)(
2

x
ph


.  The maximum Brinkman velocity values 

consistently decrease with increasing h/d. These 

trends persist for all geometric factors considered. 

Results obtained when using Ergun’s equation are 

close in values to those obtained when using the 

Kozeny-Carmen relation. 
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Table 6(a) Values of 1/f  or
max2

)(

)(
D

x

u

ph


  

when h/d = 10 

 

Table 6(b) Values of 1/f  or
max2

)(

)(
D

x

u

ph


  

when h/d = 20 

 

 

Table 7(a) Values of 


















ff cosh

1
1

1
or  

max2
)(

)(
B

x

u

ph


  when h/d = 10 

 

Table 7(b) Values of 


















ff cosh

1
1

1
or  

max2
)(

)(
B

x

u

ph


  when h/d = 20 

 
 

Tables 8(a) and 8(b) provide a listing of the values 

of 
B

x

Q

ph )2(
3


 for h/d=10 and h/d=20, 

respectively. These Tables demonstrate an increase 

in this quantity with increasing porosity, thus 

indicating an increase in the volumetric flow rate 

BQ with increasing porosity for a given combination 

of 
)2(

3

x
ph


.  The maximum Brinkman volumetric 

flow rate values consistently decrease with 

increasing h/d. These trends persist for all geometric 

factors considered. Results obtained when using 

Ergun’s equation are close in values to those 

obtained when using the Kozeny-Carmen relation. 

The viscosity ratio 

f

f

f
B

BN

tanh
33

*







 is 

illustrated in Tables 9(a) and 9(b) for h/d=10 and 

h/d=20, respectively. Qualitative behavior of the 

viscosity ratios is illustrated in Figures 2 and 3. 

Tables 9(a) and 9(b) demonstrate an increase in the 

viscosity ratio with increasing h/d, and a decrease 

with increasing porosity, for all geometric factors 

considered. When using Ergun’s equation and the 

Kozeny-Carmen relation, the viscosity ratio gets 

closer and closer to unity as porosity gets closer and 

closer to unity (the viscous flow limit). When using 

other geometric factors, the viscosity ratio is still far 

from unity for the values of h/d tested. This points 

out the need to further decrease the value of h/d 

when these porosity functions are employed. While 

the case of consolidated media renders moderate 

results for the viscosity ratio, the value remains close 

to 2 even when the porosity is close to unity. 

In terms of the transition from a Darcy regime to a 

Brinkman regime, the value of f = 3 is reached when 

the porosity is between 0.98 and 0.985 for the 

Ergun’s equation and the Kozeny-Carmen relation, 

when h/d = 10, and a porosity between 0.991 and 

0.992 for h/d = 20. For consolidated media, f = 3  is 

reached between the porosity values of 0.998 and 

0.999, for h/d = 10. It is not reached for h/d = 20. 

For granular media and unidirectional fibres, f = 3 

cannot be reached for the values h/d = 10 or 20. This 

may be an indication that for these porous structures, 

transition from Darcy to Brinkman regime occurs at 

values higher than f = 3. Furthermore, these results 
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emphasize the importance of the geometric factors in 

determining the viscosity ratio and describing the 

Brinkman flow. 

 

Table 8(a) Values of 


















f

f

f

tanh
1

1
or  

B
Q

dx

dp
h )2(

3


  when h/d = 10 

Table 8(b) Values of 


















f

f

f

tanh
1

1
 when h/d = 

20 

 

Table 9(a) Values of 

ff

ff
B

BN

tanh33

*







  when h/d = 10 

 

 

 

Table 9(b) Values of 

ff

ff
B

BN

tanh33

*







  when h/d = 20 

 

 
Figure 2 Brinkman Viscosity Ratio, h/d=10 

 

 
Figure 3 Brinkman Viscosity Ratio, h/d=20 

 

VII. CONCLUSION 
In conclusion, we have provided in this 

work a method of estimating the viscosity factor 

(hence Brinkman’s effective viscosity) based on 

using different geometric factors (porosity functions) 

under Poiseuille flow. The most informative results 

are obtained when using Ergun’s equation and the 

Kozeny-Carmen relation, where results indicate that 

the viscosity factor approaches unity (or the 

effective viscosity approaches the base viscosity) as 

porosity approaches unity (the viscous flow limit). In 

the analysis we have also determined a threshold 

value of f = 3 to serve as the transition from Darcy 

to Brinkman flow regime. This value corresponds to 

value of porosity higher than 98%, thus emphasizing 
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that Brinkman’s equation is possibly valid for high 

values of porosity. 
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